Electroweak Corrections to Associated Higgs-bottom quark production

Prerit Jaiswal

YITP, Stony Brook University and Brookhaven National Lab

26th May, 2010

Outline

- Higgs Production
 - SM Higgs Production
 - Beyond SM Higgs Production
- 2 Weak Corrections to $bg \rightarrow bH$
 - Calculation
 - Results for Tevatron and LHC

SM Higgs Production

Dominant production channels.

• gg fusion : Enhanced coupling (top Yukawa)

$$y_t \sim \frac{m_t}{v} \sim g \frac{m_t}{m_W}$$

Dominates [even though loop supressed!

SM Higgs Production

Dominant production channels.

• gg fusion : Enhanced coupling (top Yukawa)

$$y_t \sim \frac{m_t}{v} \sim g \frac{m_t}{m_W}$$

• Dominates [even though loop supressed!]

SM Higgs Production

SM Higgs Status

Bottom Yukawa?

- In SM, $y_b \sim m_b/v$ supressed.
- In MSSM: 2 Higgs

$$H_{u} = \begin{pmatrix} H_{u}^{+} \\ H_{u}^{0} \end{pmatrix}$$

$$H_{d} = \begin{pmatrix} H_{d}^{0} \\ H_{d}^{-} \end{pmatrix}$$

- 8 DOF, EWS breaking \rightarrow 3 Golstone bosons, 3 real Higgs h_0 , H_0 , A_0 and 1 complex Higgs H^+
- SU(2) invariant superpotential :

$$W = \left[y_{u_{ij}} \left(\overline{u}_{i,L} Q_j \cdot H_u \right) - y_{dij} \left(\overline{d}_{i,L} Q_j \cdot H_d \right) \right]$$

Bottom Yukawa in MSSM

Yukawa interaction

$$\mathcal{L}_{int} = -\frac{1}{2} \frac{\partial^2 W}{\partial z_i \partial z_j} \psi_i \cdot \psi_j + \text{h.c.}$$

• Diagonalize Higgs field to get h_0 , H_0 etc

$$h^0 = \sqrt{2} \left(\phi_u \cos \alpha - \phi_d \sin \alpha \right)$$

Bottom Yukawa :

$$\begin{split} \mathcal{L}_{\textit{bottom int}} &= -y_b \phi_d \left(\overline{b} \cdot b \right) + \text{h.c.} \\ &\sim -m_b \frac{\cos \alpha}{v_d} h^0 \left(\overline{b}_i \cdot b_j \right) + \text{h.c.}, \quad \tan \beta = \frac{v_u}{v_d} \\ &\sim -\frac{e m_b}{m_W \sin \theta_W} \frac{\cos \alpha}{\cos \beta} h^0 \left(\overline{b} \cdot b \right) + \text{h.c.} \end{split}$$

Bottom Yukawa in MSSM

• Decoupling limit $(m_A \gg m_Z)$: $\beta = \alpha - \pi/2$.

$$\mathcal{L}_{bottom \, int} \sim -rac{em_b}{m_W \sin heta_w} rac{\cos lpha}{\cos eta} h^0 \left(\overline{b} \cdot b
ight) + \mathrm{h.c.}$$
 $\sim \left(an eta
ight) \mathcal{L}_{bottom \, int}^{SM}$

• $pp \rightarrow b\bar{b}h$

Schemes: 4FNS

4FNS

- Fixed flavor number (= 4) [No bottom in initial state]
- Good for exclusive cross-section (both b jets tagged)
- Large logs from phase space integration $\sim \ln(\mu^2/m_b^2)$. $\mu \sim \mathcal{O}(m_H)$

Schemes: 5FNS

- Resum the logs and absorb them in bottom PDF.
- Inclusive modes have larger cross-section but also larger backgrounds.
- Lowest order diagrams \leftrightarrow Zero p_T
- Can be used for inclusive or semi-inclusive cross-section (no or one b tag)

Tree level $bg \rightarrow bH$

Lowest order :

Differential cross-section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = -\frac{\alpha_s(\mu)}{24s^2} \left[y_b(\mu) \right]^2 \left[\frac{M_H^4 + u^2}{st} + \ldots \right]$$

- ... terms supressed by powers of m_b .
- Our analysis, $m_b \neq 0$.

Tree level $bg \rightarrow bH$

Lowest order :

Differential cross-section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = -\frac{\alpha_s(\mu)}{24s^2} \left[y_b(\mu) \right]^2 \left[\frac{M_H^4 + u^2}{st} + \ldots \right]$$

- ... terms supressed by powers of m_b .
- Our analysis, $m_b \neq 0$.

What happens for $m_b \rightarrow 0$

- Tree level $\mathcal{M}_0 \propto y_b \propto m_b$ $\Rightarrow \mathcal{M}_0$ vanishes !!
- One-loop corrected amplitude

$$\mathcal{M} = |\mathcal{M}_0 + \mathcal{M}_1|^2$$

= $|\mathcal{M}_0|^2 + 2\mathcal{M}_0\mathcal{M}_1^* + |\mathcal{M}_1|^2$
 $\to |\mathcal{M}_1|^2$

- Only a few diagrams contribute (not supressed by bottom Yukawa).
- Significant contribution in SM (\sim 8%) [Mrenna and Yuan, Phys. Rev. D 53, 3547–3554 (1996)]

What happens for $m_b \rightarrow 0$

- Tree level $\mathcal{M}_0 \propto y_b \propto m_b$ $\Rightarrow \mathcal{M}_0$ vanishes !!
- One-loop corrected amplitude

$$\mathcal{M} = |\mathcal{M}_0 + \mathcal{M}_1|^2$$

= $|\mathcal{M}_0|^2 + 2\mathcal{M}_0\mathcal{M}_1^* + |\mathcal{M}_1|^2$
 $\to |\mathcal{M}_1|^2$

- Only a few diagrams contribute (not supressed by bottom Yukawa).
- Significant contribution in SM (\sim 8%) [Mrenna and Yuan, Phys. Rev. D 53, 3547–3554 (1996)]

What happens for $m_b \rightarrow 0$

- Tree level $\mathcal{M}_0 \propto y_b \propto m_b$ $\Rightarrow \mathcal{M}_0$ vanishes !!
- One-loop corrected amplitude

$$\mathcal{M} = |\mathcal{M}_0 + \mathcal{M}_1|^2$$

= $|\mathcal{M}_0|^2 + 2\mathcal{M}_0\mathcal{M}_1^* + |\mathcal{M}_1|^2$
 $\to |\mathcal{M}_1|^2$

- Only a few diagrams contribute (not supressed by bottom Yukawa).
- Significant contribution in SM (\sim 8%) [Mrenna and Yuan, Phys. Rev. D 53, 3547–3554 (1996)]

$m_b \neq 0$ case

- $|\mathcal{M}_0|^2 \Rightarrow \mathcal{O}(\alpha_s G_F)$ [tree level, small in SM] $|\mathcal{M}_1|^2 \Rightarrow \mathcal{O}(\alpha_s G_F^3)$ [large in SM, approx same in MSSM] $\mathcal{M}_0 \mathcal{M}_1^* \Rightarrow \mathcal{O}(\alpha_s G_F^2)$ [small in SM, can be large in MSSM]
- Renormalization :
 - Input parameters : α, M_Z, G_F
 - Calculate 1-loop corrected W mass

$$M_W^2 = \frac{M_Z^2}{2} \left[1 + \sqrt{1 - \frac{4\pi\alpha}{\sqrt{2}G_F M_Z^2} (1 + \Delta r)} \right]$$

OS scheme for EW sector

$m_b \neq 0$ case

- $|\mathcal{M}_0|^2 \Rightarrow \mathcal{O}(\alpha_s G_F)$ [tree level, small in SM] $|\mathcal{M}_1|^2 \Rightarrow \mathcal{O}(\alpha_s G_F^3)$ [large in SM, approx same in MSSM] $\mathcal{M}_0 \mathcal{M}_1^* \Rightarrow \mathcal{O}(\alpha_s G_F^2)$ [small in SM, can be large in MSSM]
- Renormalization:
 - Input parameters : α, M_Z, G_F
 - Calculate 1-loop corrected W mass

$$M_W^2 = rac{M_Z^2}{2} \left[1 + \sqrt{1 - rac{4\pilpha}{\sqrt{2}G_F M_Z^2} \left(1 + \Delta r
ight)}
ight]$$

OS scheme for EW sector

Loop Calculations $bg \rightarrow bH$

- Automized Calculations
 - FEYNARTS to generate diagrams
 - FORMCALC for calculation of amplitudes [Passarino-Veltman functions]
 - LOOPTOOLS for numerical computation of PV integrals
- Checks:
 - UV finiteness
 - Scale dependence
- Separate the weak part

$$\sigma(\mathit{bg} \to \mathit{bH})_{\mathit{NLO}} = \sigma(\mathit{bg} \to \mathit{bH})_{0} \left[1 + \Delta_{\mathit{QCD}} + \Delta_{\mathit{QED}} + \Delta_{\mathit{WK}} \right]$$

Loop Calculations $bg \rightarrow bH$

Loop Calculations $bg \rightarrow bH$

Results for Tevatron $bg \rightarrow bH$

$$p_T > 20$$
 GeV and $|\eta| < 2.0$

Tevatron (
$$E_{CM} = 1.96 \text{ TeV}$$
)

Improved Born Approximation

ullet Calculate weak correction to H o bar b

$$\Gamma(H o bar{b})_{NLO} = \Gamma(H o bar{b})_0 \left[1 + \Delta_{QCD}^{bbH} + \Delta_{QED}^{bbH} + \Delta_{WK}^{bbH}
ight]$$

Define IBA as

$$\sigma(\mathit{bg} o \mathit{bH})_{\mathit{NLO}} = \sigma(\mathit{bg} o \mathit{bH})_{0} \left[1 + \Delta^{\mathit{bbH}}_{\mathit{QCD}} + \Delta^{\mathit{bbH}}_{\mathit{QED}} + \Delta^{\mathit{bbH}}_{\mathit{WK}}
ight]$$

Results for Tevatron $bg \rightarrow bH$

- Total weak corrections small (except near thresholds)
- Even smaller in IBA formalism (less than 1%)

Results for LHC ($\sqrt{s} = 7 \text{ TeV}$) $bg \rightarrow bH$

 $p_T > 25$ GeV and $|\eta| < 2.5$

- Total weak corrections small except near thresholds and large Higgs mass (~ 18% at 1 TeV).
- ullet Even smaller in IBA formalism (less than 1% for $m_H < 500$ GeV)

Summary

- Associated Higgs-bottom production supressed in SM
- But important in models beyond SM where bottom Yukawa is enhanced.
- ullet Some general features of weak corrections for bg o bH :
 - ullet Weak corrections small except at thresholds and large m_H .
 - IBA (corrections from bbH) is a good approximation.
- Outlook
 - Investigate BSM weak corrections where b yukawa is enhanced.
 - [arXiv:1005.0759, Beccaria et al : Electroweak one-loop calculation in MSSM]

